Erratum: Mesoscopic solvent simulations: Multiparticle-collision dynamics of three-dimensional flows [Phys. Rev. E 66, 036702 (2002)]

E. Allahyarov and G. Gompper (Received 31 January 2003; published 1 May 2003)

DOI: 10.1103/PhysRevE.67.059901 PACS number(s): 02.70.Ns, 47.11.+j, 82.20.Wt, 99.10.Cd

While the data produced by our multiparticle-collision dynamics (MPCD) program are correct, we made a couple of errors when introducing dimensionless quantities. The following corrections are noted.

- (1) At the beginning of Sec. IV A, the correct definition of the dimensionless gravitation constant is $g^* = gl_c/k_BT$, instead of $g^* = gh/\sqrt{k_BT}$. Furthermore, throughout the paper, the old values of $g^* = 0.005$ and $g^* = 0.0025$ have to be replaced by $g^* = 0.0044$ and $g^* = 0.0022$, respectively.
- (2) The multiplier for the rescaled velocity v' in the captions of Figs. 4, 5, and 6 is 10 instead of 10^2 , i.e., the correct relation is $v' = (v/\sqrt{k_B T}) \times 10$.
- (3) The correct definition of dimensionless viscosity in Figs. 7 and 9 is $(\nu h/l_c^2) \times 10$ instead of $\nu h/L_y^2$ 10³. For the same reason, in Fig. 10 the dimensionless viscosity $(\nu h/l_c^2) \times 10^2$ should be used instead of $\nu h/L_y^2$ 10⁴.
- (4) In Eq. (7), 18 in the denominator should be replaced by 6 and a factor l_c^2 has to be added to the numerator. The correct equation then reads

$$\nu = \frac{l_c^2}{6h} \Lambda^2 \frac{3(1 - e^{-M}) + 2M}{e^{-M} - 1 + M}.$$
 (1)

The correct expression was used in the original version of Fig. 9.

- (5) Since the definition of the dimensionless viscosity is now different, its values in the paragraphs before and after Eq. (6) are also changed. The correct values are as follows. Line 4 before Eq. (6): $v^* = vh/l_c^2 = 5 \times 10^{-2}$; line 1 after Eq. (6): $v^* = vh/l_c^2 = 8.3 \times 10^{-2}$.
- (6) In Fig. 9, in addition to the new definition of the dimensionless viscosity noted above, the line of the analytical estimate for small Λ is also changed. The updated figure is shown here.

